Table of Contents

LIST OF TABLES AND FIGURES ... 3
LIST OF ACRONYMS ... 4
CONTEXT ... 5
1. **SURVEY OBJECTIVE** ... 7
2. **METHODOLOGY** ... 8
 2.1. **SAMPLE FRAME** .. 8
 2.2. **DATA COLLECTION AND TIMELINE** .. 9
 2.3. **SURVEY LIMITATIONS** ... 9
3. **RESULTS** .. 9
 3.1. **FINDINGS** .. 9
4. **RECOMMENDATIONS** .. 13
 4.1. **PROGRAMMING** .. 13
 4.2. **SUPPORT** ... 13
 4.3. **SECURITY AND ACCESS** ... 13
 ERROR! BOOKMARK NOT DEFINED.
ANNEX I – HOUSEHOLD SURVEY QUESTIONNAIRE (FRONT SIDE) ... 15
ANNEX II – HOUSEHOLD SURVEY QUESTIONNAIRE (BACK SIDE) ... 16
ANNEX III – FOCUS GROUP DISCUSSION QUESTIONNAIRE (FRONT SIDE) 17
ANNEX IV – FOCUS GROUP DISCUSSION QUESTIONNAIRE (BACK SIDE) 18
ANNEX V - DATA SUMMARY– HOUSEHOLD SURVEY .. 19
List of Tables and Figures

Table 1-Union Councils Surveyed in Dadu ... 8
Table 2-Sources of Drinking Water by Percentage.. 10
Table 3-Type of Water Treatment by Percentage.. 11

Figure 1-Photo: Deep well in the village of Ali Mohammad Chandio, Sindi Butra UC.........10
Figure 2-Photo: Dilapidated latrine in village of Ali Sher Khoso, Mangwani UC...............11
Figure 3-Photo: Hand pump/borehole in village of Geo Hallo, Sindi Butra UC...............12
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF</td>
<td>Action Contre la Faim (Action Against Hunger)</td>
</tr>
<tr>
<td>BHU</td>
<td>Basic Health Unit</td>
</tr>
<tr>
<td>FGD</td>
<td>Focus Group Discussion</td>
</tr>
<tr>
<td>HH</td>
<td>Household</td>
</tr>
<tr>
<td>NGO</td>
<td>Non Governmental Organisation</td>
</tr>
<tr>
<td>UC</td>
<td>Union Council</td>
</tr>
<tr>
<td>WaSH</td>
<td>Water and Sanitation, Hygiene</td>
</tr>
</tbody>
</table>
CONTEXT

Dadu district is located on the western border of Sindh province with Balochistan. Sindh is part of the lower Indus Valley and the central region of Sindh where Dadu district is found has a dry climate with very little annual rainfall. The Indus River flows through Sindh province from north to south where it reaches the Arabic sea and is a primary source of water.

Water in Dadu is available from relatively shallow groundwater or irrigation canals coming from the Indus. Villages in the district primarily use two water technologies. A hand pump is the main technology used to draw water which comes from either a small diameter borehole or a collection pond while in a few cases electric pumps are used (often for irrigation).

Water schemes used by the villages are various. Mostly there are small diameter boreholes (tube-wells) installed without a drill rig around 30 to 50 feet in depth. Occasionally deep-set boreholes can be found which are also installed without a rig to around 100 – 115 feet in depth. Because of high levels of salinity in groundwater, some of the tube-wells are installed close to the river or irrigation canals where the water is less brackish.

Water collection ponds are constructed to capture water from irrigation channels. A hand-pump or electric pump with lateral, lead pipe will pull water to collection points. In a very few cases there are larger electric pumps moving collection water to village points via a pipe main. In these cases government institutions provide the electricity and salary for the pump technician. However a few schemes involved payment for water services by households either to the water technician who managed the electric pump and water main, or to villagers who delivered jerry cans of potable water by donkey and cart from water points outside of the village.

Generally speaking water is available in Dadu but quality is an issue. Poor development and protection of water points contributes to poor quality, furthermore, the ground water is said to be becoming slowly more brackish. There are several reasons for the increase in brackishness, all of which are related to the Indus River.

As volume in the Indus changes so does the siltation pattern. Changes in siltation patterns raise the bottom of the river in some areas while reducing the available land in the deltaic region effectively raising the level of groundwater\(^1\). These changes can be said to lead to increased flooding and exposure of the groundwater to high salinity in the top-soil.

Higher salinity levels are found in the top portions of the soil because the deltaic region is relatively flat causing the river to leave deposits in its slow drain into the sea. But there is also an evaporation mechanism as a result of the shallow water table which leaves deposits near the ground surface. These surface deposits are further compounded with flooding.

\(^1\) Executive Summary of the World Water Development report. CRED (Centre for Research on the Epidemiology of Disasters). The OFDA/CRED International Disaster Database. Brussels, Universite Catholique de Louvaine. 2002
The final effect on ground water in the region is the change in rainfall, as well as the change in melt-water from the Himalayas, both of which are important for recharging ground water\(^2\). However as groundwater recedes there is also a natural encroachment of sea water.

Villages in Dadu are strikingly dissimilar from each other in terms of tribe and background but also in terms of available water and quality. Such factors precipitate differing practices in hygiene and sanitation as well.

Dadu was badly affected by the 2010 river floods. The floods affected 919,000 people (40% of the population, 1717 sq km or 36% of Dadu, and caused losses of over 2.5 billion rupees in the agricultural sector alone.

Dadu was not affected by the river floods in 2011 as it was in 2010, but by rain floods. The 2011 floods affected 325,000 people and 187,811 acres in 1,454 villages in 52 UCs in 4 Talukahs. The damages included 19 people dead, 97,248 acres of crops damaged, 5,543 houses destroyed and 13,051 damaged, also water, sanitation, roads and communications infrastructure was destroyed.

As the water and sanitation infrastructures are not built to resist disaster these floods have worsened the WaSH situation in Dadu. Currently, a large number of families have lost their houses, food stocks and crops. Given the current hygiene and sanitation situation, the risk of water-borne diseases has increased. If this trend of annual floods continues the risks can only increase.

\(^2\) Groundwater Salinity in Coastal Aquifer of Karachi, Pakistan (A Preliminary Investigation) A. Mashiatullah*, R.M. Qureshi, N.A. Qureshi, E. Ahmad, M. A. Tasneem, M. I. Sajjad, H. A. Khan
1. **Survey Objective**

The baseline survey seeks to establish a statistical representation of the WaSH situation for current ACF positioning in Dadu district. This statistical data is augmented with information taken from group discussions and used to further ACF understanding of WaSH in relation to health and nutrition morbidity rates in order to gauge the appropriateness of an integrated WaSH program.

For specific reference the survey framework is as follows:

- To find the amount of water available at the household level (non-specific water use)
- To find the amount of water available for drinking at the household level
- To find where the drinking water comes from at the household level
- To find how many pay for water services at the household level
- To find the hygiene practice at the household level (with respect to hand washing and drinking water storage)
- To find types of sanitation access available at the household level
- To find under 5 diarrhea incidence at the household level
- To identify the hazards faced by the villages in Dadu
- To identify the risks of flood (primary hazard) at the household level
2. **Methodology**

2.1. **Sample Frame**

The sample frame has been defined as the following 9 union councils within the catchment of the ACF Nutrition program in Dadu District.

<table>
<thead>
<tr>
<th>NAME OF U.Cs</th>
<th>NO. VILLAGES</th>
<th>TOTAL POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TORRE</td>
<td>33</td>
<td>22,668</td>
</tr>
<tr>
<td>2 SINDHI BUTRA</td>
<td>65</td>
<td>25,884</td>
</tr>
<tr>
<td>3 BUGHIO</td>
<td>49</td>
<td>24,701</td>
</tr>
<tr>
<td>4 PARIYA</td>
<td>53</td>
<td>27,000</td>
</tr>
<tr>
<td>5 MOUNDAR</td>
<td>55</td>
<td>24,380</td>
</tr>
<tr>
<td>6 MANGWANI</td>
<td>97</td>
<td>23,075</td>
</tr>
<tr>
<td>7 KAMAL KHAN</td>
<td>49</td>
<td>20,788</td>
</tr>
<tr>
<td>8 BAHAWAL PUR</td>
<td>46</td>
<td>20,500</td>
</tr>
<tr>
<td>9 NAO GOATH</td>
<td>72</td>
<td>22,956</td>
</tr>
<tr>
<td>TOTAL</td>
<td>519</td>
<td>211,952</td>
</tr>
</tbody>
</table>
The survey was carried out through a cluster sample of 30 clusters defined as villages. The number of samples was defined according to a 10% degree of accuracy and 5% error level. In order to discuss issues further and for triangulation, one Focus Group Discussion was conducted in each of the 30 clusters.

2.2. Data Collection and Timeline

Data was collected through household interviews as well as Focus Group Discussions within each cluster for 3 days, December 1 – December 3. A total of 7 samples were collected per cluster by 4 teams of 4 persons each with a team leader. The teams were weighted with more females than males in order to effectively access the households and interview the women of these households.

2.3. Survey Limitations

A one-day training for the survey teams prior to starting the survey revealed low level of English comprehension. As a result, a full evaluation of the surveyors by team leaders could not be accomplished. In light of this a translation was quickly prepared to facilitate household level interviews but a full understanding of concepts on the questionnaire could not be reached. Several translation errors were observed during the survey.

Furthermore, some of the villages surveyed were somewhat guarded by village leaders. In some instances female surveyors were not allowed full access to villages while in other instances male surveyors were not allowed access. Still in a few villages the leaders and elders tended to lead the surveyors to different houses or routes through the village. In most cases, for example, village elders selected the participants of group discussions. All of these factors contribute to biases.

The villages themselves were very different from each other. Even neighboring villages could have very different survey results. A sampling method of stratification might present more accurate data. Also, the distinct differences in villages and tribes put strain on the survey teams as team members worked hard to pay courtesy to leadership structure and quickly found the most effective access to households.

3. RESULTS

3.1. Findings

The survey found water access to be acceptable. Of the households surveyed 88% described the water point as near. These same households reported an average total of 13.3 liters per person available for general household utility use. This high number of water available in the household considering 66% of focus group discussions made a statement saying bathing was happening at the water point. Yet during focus group discussions and from interviews in health facilities the following illnesses were mentioned as most prevalent: diarrhea, malaria, hepatitis b and c, fever, asthma and skin
diseases/infections. 55% of focus groups described these illnesses as debilitating with respect to work, school and general livelihood.

When asked where drinking water was sourced the household survey yielded the following:

Table 2 - Sources of Drinking Water by Percentage

<table>
<thead>
<tr>
<th>Source</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borehole</td>
<td>88%</td>
</tr>
<tr>
<td>Water-pond</td>
<td>4.7%</td>
</tr>
<tr>
<td>Well</td>
<td>6%</td>
</tr>
<tr>
<td>Irrigation Channel</td>
<td>6%</td>
</tr>
</tbody>
</table>

The table above illustrates the borehole is the main source of drinking water while 11% are collecting drinking water from open sources such as water ponds or irrigation channels. The borehole however can present the same amount of risk as open sources if not properly protected. 21% of focus group discussions in the surveyed villages revealed that none of the boreholes were protected with aprons, drainage or casings and 64% of focus group discussions said only a few (less than half) of boreholes in the village were protected in some way. From direct observation, many existing aprons were still in poor condition or broken. Poor drainage often added to water ponding (as can be seen in Figure 1 below) and in many cases water was being removed manually.

![Figure 1: Hand pump/borehole in village of Geo Hallo, Sindi Butra UC - poor drainage and protection of water point leading to stagnant and contaminated ponding of water in the middle of the compound.](image)

Additionally, from focus group discussions it was reported 37% of the villages’ water points were non functional. 45% of these same focus group discussions revealed the villages were satisfied with the quality of the water with approximately the same percentage of focus groups saying their water sources had become more brackish.

When asked what kind of water treatment was being accomplished at the household level the following results were found.

3 Some villages have more than one source, hence total more than 100%.
Table 3 - Type of Water Treatment by Percentage

<table>
<thead>
<tr>
<th>Method</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No method</td>
<td>71%</td>
</tr>
<tr>
<td>Cloth filter</td>
<td>19%</td>
</tr>
<tr>
<td>Boiling</td>
<td>3%</td>
</tr>
<tr>
<td>Filtration/aqua tabs</td>
<td>7%</td>
</tr>
</tbody>
</table>

While 71% of households surveyed said *no method* of water treatment was used, 19% said they used a cloth filter to strain water and 3% boiled water before drinking. This is very a very likely indication of contamination. 61% of focus group discussions conducted expressed interest in some form of filtration.

Figure 2. Deep well in the village of Ali Mohammad Chandio, Sindi Butra UC. It was contaminated during the 2010 floods and is subsequently unusable. Villagers are now forced to rely upon other, more brackish sources.

92% of respondent households reported having a specific container for water storage and the survey found on average each household has a little over 4.5 liters per person of drinking water stored. Overwhelmingly, 97% of households do not pay for water.

61% of households did not have soap observably ready for hand washing and yet 53% claimed they washed hands using soap. Almost all of focus group discussions (97%) agreed that they were able to purchase soap in the village or in a town less than 5 kilometers away.

Areas where population defecates (segregated by gender)
There are already a limited number of latrines in the villages and there is knowledge of the importance of this type of sanitation. As shown in the table above the sanitation practices are different between men and women, while similar percentages use some form of latrines (47% men 52% women), open defecation is done by 46% of men vs 12% of women while 36% of women use a fenced in area and only 6% of men. 33% of focus group discussions among these villages revealed temporary latrines had been installed in the village during 2011 flood relief efforts, however, most of these latrines had degraded to a point where they were no longer functional as use and the environment had taken its toll (see Figure 3 below). These are good signs of community readiness for latrine technology.

![Figure 3: Dilapidated latrine in village of Ali Sher Khoso, Mangwani UC.](image)

The survey found 1.5 children under the age of 5 per household, with an average household size of 8.6 persons. The survey also found an average of 0.8 children under the age of 5 years old per household had had an incident of diarrhea in the previous 2 weeks. This equates to over 50% of children under 5 years old in households surveyed having cases of diarrhea. In other words, close to an average of 1 child (under 5) per household with diarrhea in the past 2 weeks. 75% of focus group discussions in the survey villages surveyed said diarrhea related illness was a primary concern.

When questioned whether the household had experienced flooding this year the survey found an overwhelming 85% had been flooded with 68% of households needing to change location in order to escape this year’s flood.

Along these same lines the survey found 48% of households experienced water shortages in the past with 7% needing to permanently change locations in order to be closer to available water. When questioned, all focus groups expressed an overwhelming enthusiasm to be involved with collaborative projects aimed at mitigating the risk of future hazards. All 33 focus groups identified flooding due to heavy rains as a problem, 26 of the groups identified river flooding as a problem and 1 group identified conflict as a hazard.
Who the villages have received support from.

As the table above shows most of the support received by the villages comes from NGOs or the UN.

4. RECOMMENDATIONS

4.1. Programming

WaSH Programming within the surveyed villages should involve catchment BHUs and RHUs of those communities. ACF should ensure that all of the ACF nutrition centers have proper water and sanitation infrastructure. Also ACF hygiene messages should be presented to all who use the nutrition centers, and provide some basic hygiene supplies (soap) to nutrition patients when they are cured. Access to safe water is priority and strong hygiene promotion campaigns with emphasis on hand washing are critical in the villages. Water point improvement and repair through disinfection and construction of robust, flood-proof aprons should be the priority and can be tied to DRM. All water points should be managed by a well trained management committee. Either one committee per village or one per water point, whichever is more culturally acceptable. Also hand washing campaigns and soap distributions should be invested among schools in order to change habits within households.

There are options for development and repair of water collection ponds. In relation to collection ponds there is opportunity to pilot test a local version of the bio-sand filter known as the Nadi filter (a cheap and simple design, easy to use and constructed with readily available materials in the region). Follow-up of the filter at the household level can be linked with the hygiene promotion team and give added, solution-based value to existing campaign messages.

Communities and villages in Dadu are receptive to latrines. Even in communities or households without a latrine they are using controlled open defecation fields complete with fences. Still many households have been found to be constructing their own latrine or sharing with a neighbor. It is possible for ACF to construct centralized, lined-pits and target 4 to 5 households each for construction of their own latrine superstructure whilst tying in with the ACF pit. The targeting and organization would best be accomplished through the hygiene promotion team again adding solution-based value to existing campaign messages.

Most of the WaSH initiatives in the area arrived as result of relief for flooding. But, there is a small amount of government assistance that is happening from the local level usually in the form of
deep-well hand pumps with flood resistant aprons. The Taluka Municipal Administration is responsible to provide villages with small scale water systems (e.g. boreholes with hand pumps), while the District Public Health Engineering Department is responsible for large scale water systems. It is advisable for ACF to begin to coordinate and plan alongside these initiatives where possible in order to bolster stronger working relationships and project sustainability. In this case targeting priorities must be well defined so that the ACF charter can be maintained while working together with other actors.

During group discussions, villages and communities expressed interest in working with the organization (eagerness to supply labor) to mitigate flooding. For example by building tool banks and facilitating construction of drainage systems and levies as well as renovating and reinforcing household foundational structures.

The availability and quantity of water seem not to be a major issue from the data as ground water sources are providing sufficient volume in most places visited. However, in some villages the water is not enjoyed, as it is too saline so drinking water is taken from water ponds which could often be relatively far from households and need to be transported. What was most alarming from the data was the prevalence of morbidity among under 5’s due to diarrhea and other water borne diseases (50% in the previous 2 weeks). Moreover, when serious enough and when possible or affordable, many cases sought medical assistance (although these figures could not be triangulated because of temporary health clinic closures). Nevertheless, it is evident that there is urgent need for comprehensive hygiene promotion especially at household level as well as provision of sanitation facilities and awareness.

It must be stressed that a wide range of differing circumstances and needs were identified even in villages of relatively close proximity and it is therefore imperative to identify and verify specific interventions on a case-by-case basis. For example, some villages indicated complete satisfaction with their drinking water source (even though conductivity readings were relatively high, meaning high salinity) and were not interested in any form of filtering, whereas neighboring (1-2km) settlements were very receptive to the idea of filtering. However it must also be noted that such targeting, even though based on a desire on the part of the beneficiaries, should be very sensitive to social and political concerns. Also it needs to be explained to the communities that filtering will not affect the salinity, and is only for biological and particulate contaminants.
ANNEX I – HOUSEHOLD SURVEY QUESTIONNAIRE (FRONT SIDE)

WATER

1. How many water containers does your family use each day for all household water usage?
 - 10 - 15 LITER CONTAINER
 - 15 - 20 LITER CONTAINER
 - 20 - 25 LITER CONTAINER
 - 25 - 30 LITER CONTAINER
 - OVER 30 LITER CONTAINER

1.1 How does the respondent describe the distance required to fetch water for the household?
 - FAR
 - NEAR
 - DELIVERED

2. What is the source of your family’s drinking water?
 - RIVER/IRRIGATION CHANNEL
 - BOREHOLE
 - BOREHOLE NEAR RIVER
 - WATER POND
 - RAIN WATER POND
 - WELL
 - LAKE

3. How does your family treat the drinking water?
 - BOILING
 - CLOTH FILTER
 - AQUA TABS/SACHET/CHLORINATION
 - BIOSAND FILTRATION
 - SEDIMENTATION
 - SEDIMENTATION AND TRANSFER

4. Is there a separate container for drinking water?
 - YES
 - NO

4.1 How many containers of drinking water are available inside the house?
 - 10 - 15 LITER CONTAINER
 - 15 - 20 LITER CONTAINER
 - 20 - 25 LITER CONTAINER
 - 25 - 30 LITER CONTAINER
 - OVER 30 LITER CONTAINER

5. Does your family pay for water?
 - YES
 - NO

HYGIENE AND SANITATION

6. How many times a day does your family wash their hands?
 - 0
 - 1
 - 2
 - 3
 - 4

7. How does your family wash their hands?
 - BY POURING WATER INSIDE HOUSE
 - BY POURING WATER OUTSIDE HOUSE
 - AT THE WATER POINT/SOURCE

8. What does your family use for hand washing?
 - WATER
 - WATER WITH SOAP
 - WATER WITH ASH

8.1 Is soap or ash visible?
 - YES
 - NO

9. Where do women in your family defecate?
 - HOUSEHOLD LATRINE
 - SHARED LATRINE
 - FENCED AREA
 - PUBLIC/COMMUNAL LATRINE
 - OUTSIDE THE VILLAGE
 - AGRICULTURE FIELDS
 - BY WATER CHANNEL

Where do men in your family defecate?

HEALTH

10. How many children less than 5 years old in your family had incidences of diarrhea in the past 2 weeks?
 - 0
 - 1
 - 2
 - 3
 - 4

11. Has a child less than 5 years old in your family visited a clinic for treatment of diarrhea?
 - YES
 - NO

HAZARD RISKS

12. Has your family’s house experienced flooding this year?
 - YES
 - NO

12.1 Did your family have to move to escape the flooding?
 - YES
 - NO

13. Has your family experienced water shortage in the past?
 - YES
 - NO

13.1 Did your family need to move to be closer to water?
 - YES
 - NO
Water Sanitation and Hygiene Survey Questionnaire

Name of Respondent(s)
Total number of individuals in household
Number of children in household (less than 5 years of age)
Name and Signature of Interviewer
Name and Signature of Team Leader
Date of Interview
Location (District, Union Council, Village)
Household No.
ANNEX III – FOCUS GROUP DISCUSSION QUESTIONNAIRE (FRONT SIDE)

DaduWaSH Baseline Survey - Focus Group Discussions

<table>
<thead>
<tr>
<th>Village Name and UC:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Leader:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>1. GPS coordinates:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. What are the conductivity readings for the drinking water?</th>
<th>µS/cm</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3. General</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Is the community aware of ACF Nutrition program and services?</td>
</tr>
<tr>
<td>3.2 What is the number of households in the village?</td>
</tr>
<tr>
<td>3.3 Is there support or projects from the government or other organisations?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Number of water points in the village?</td>
</tr>
<tr>
<td>4.2 Number of broken water points?</td>
</tr>
<tr>
<td>4.3 Types of water sources?</td>
</tr>
<tr>
<td>4.4 Is the village satisfied with the quality of water?</td>
</tr>
<tr>
<td>4.5 Has the water changed recently? How?</td>
</tr>
<tr>
<td>4.6 How much of the village pays for water?</td>
</tr>
<tr>
<td>4.7 Is the village interested in household water treatment (biosand/nadi filters)?</td>
</tr>
<tr>
<td>4.8 What portion of the water points are protected (aprons, well covers, fences etc)?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NONE</th>
<th>SOME</th>
<th>MOST</th>
<th>ALL</th>
</tr>
</thead>
</table>

17
5. Latrines
5.1 Number of temporary latrines?
5.2 Number of permanent latrines?
5.3 Total Number of latrines per village?
5.4 Number of functional latrines?
5.5 Types of latrines in village (communal, household, shared)?

5.6 Are families interested in building household latrines? Y N

6. Health/Hygiene
6.1 Where do families buy soap?
6.2 Where do men and women from the village wash/bathe?
6.3 Are living spaces fenced to keep animals away? Y N
6.4 What are common illnesses faced by the village?
6.5 What are the effects of these illnesses on individuals and the village? (Do they affect their ability to work and/or attend school?)
6.6 Where do families receive medical services?
6.7 What are the most common reasons for attending this health clinic?

7. Natural Hazards
7.1 Which types of natural hazards are faced by the village?
7.2 How much of the village has been effected by the hazards?
7.3 Is there interest in finding ways to protect the village from these hazards through improved construction techniques? Y N
<table>
<thead>
<tr>
<th>#</th>
<th>Question</th>
<th>Possible Responses</th>
<th>Average</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>How many water containers does your family use each day for all household water usage?</td>
<td>10 – 15 LITER CONTAINER 51% 15 – 20 LITER CONTAINER 14% 20 – 25 LITER CONTAINER 18% 25 – 30 LITER CONTAINER 11% OVER 30 LITER CONTAINER 6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>How does the respondent describe the distance required to fetch water for the household?</td>
<td>FAR 83% NEAR 17% DELIVERED 17%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>What is the source of your family's drinking water?</td>
<td>RIVER/IRRIGATION CHANNEL 6% BOREHOLE 88% BOREHOLE NEAR RIVER WATER POND 5% RAIN WATER POND 6% WELL 6% LAKE (multiple Sources)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>How does your family treat the drinking water?</td>
<td>BOILING 3% CLOTH FILTER 19% AQUA TABS/SACHET/CHLORINATION 7% BIOSAND FILTRATION SEDIMENTATION SEDIMENTATION AND TRANSFER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Is there a separate container for drinking water?</td>
<td>YES 92% NO 8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>How many containers of drinking water are available inside the house?</td>
<td>10 – 15 LITER CONTAINER 66% 15 – 20 LITER CONTAINER 24% 20 – 25 LITER CONTAINER 4% 25 – 30 LITER CONTAINER 4% OVER 30 LITER CONTAINER 1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Does your family pay for water?</td>
<td>YES 3% NO 97%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>How many times a day does your family wash their hands?</td>
<td>0 3 times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>How does your family wash their hands?</td>
<td>BY POURING WATER INSIDE HOUSE 85% BY POURING WATER OUTSIDE HOUSE 8% AT THE WATER POINT/SOURCE 7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>What does your family use for hand washing?</td>
<td>WATER 36% WATER WITH SOAP 53% WATER WITH ASH 11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Is soap or ash visible?</td>
<td>YES 39% NO 61%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Where do women in your family defecate?</td>
<td>HOUSEHOLD LATRINE M F 35% 37% SHARED LATRINE M F 6% 9% FENCED AREA M F 6% 36%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Where do men in your family defecate?</td>
<td>PUBLIC/COMMUNAL LATRINE M F 6% 6% OUTSIDE THE VILLAGE M F 6% 6% AGRICULTURE FIELDS M F 6% 37%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Question</td>
<td>BY WATER CHANNEL</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>How many children less than 5 years old in your family had incidences of diarrhea in the past 2 weeks?</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Has a child less than 5 years old in your family visited a clinic for treatment of diarrhea?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Has your family’s house experienced flooding this year?</td>
<td></td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>12.1</td>
<td>Did your family have to move to escape the flooding?</td>
<td></td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>13</td>
<td>Has your family experienced water shortage in the past?</td>
<td></td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>13.1</td>
<td>Did your family need to move to be closer to water?</td>
<td></td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>