Modelling Early Risk Indicators to Anticipate Malnutrition (MERIAM)

David Backer
University of Maryland

Ravi Bhavnani
Graduate Institute Geneva

Shannon Doocy
Johns Hopkins University

Kathryn Grace
University of Minnesota

Pascal Debons
Action Against Hunger

Alice Stevenson
Ellyn Yakovenko

INTRODUCTION

- Global challenges of food insecurity
 - 47 million children are acutely malnourished
 - Nearly half of all deaths in children under the age of five attributed to malnutrition
- Decision-makers lack timely, evidence-based information on acute malnutrition
- Pressing practical need to facilitate action ahead of a crisis, rather than responses during or after peak

BACKGROUND

- Design, test, and scale up cost-effective means to improve the prediction and monitoring of acute malnutrition
- Comparative analysis of several priority countries affected by climate- and conflict-related shocks
- Modeling using open access secondary data
- Identification of leading indicators
- Enhance capabilities of stakeholders in humanitarian community to be proactive in responding to risks of acute malnutrition

PROJECT GOALS

- Open-source data can be used to predict acute malnutrition in difficult, volatile contexts with real-world utility
- Strong, consistent performance of both modelling approaches
 - High accuracy when mapped onto IPC-equivalent scale
 - Out-of-sample tests indicate utility in forecasting applications
 - Further analysis and validation remains ongoing
- Model-based tools currently under development have potential to advance early warning in a manner that enables effective responses to manage and mitigate nutritional risk

FINDINGS

- Novel approach using multiple types of modelling
 - Complementary analysis
 - Different points of emphasis
 - Varying levels of granularity
 - Greater generalizability and robustness of results
- Two workstreams of spatio-temporal econometric modelling
 - Subnational regional
 - Covers 29 countries in sub-Saharan Africa from 2000-2018
 - Predicting regional prevalence rate of acute malnutrition
 - Multi-level
 - Analysis by region within Kenya, Uganda, Nigeria, Mali, and Somalia at select time points between 2003 and 2016
 - Predicting measures of wasting at individual level, nested in units from household to regional level
 - Models ascertain where acute malnutrition is expected and which children/households are likely to experience
- Workstream of evidence-driven computational modelling
 - Prototypes focus on sub-national regions in three countries
 - Uganda: Karamoja
 - Kenya: West Pokot + Turkana
 - Somalia: Hawd
 - Purpose is to understand effects of household-level decisions on acute malnutrition
 - Accounts for sources of variation: household characteristics; local, contextual factors; macro-level covariates

METHODOLOGY

- Econometric Modeling
 - 1-month vantage
 - 6-month vantage

- Computational Modeling
 - Framework of computational model
 - Observed prevalence rate vs. predicted prevalence rate for wards of West Pokot, Kenya

This document is an output from a project funded by the UK Aid from the UK Foreign, Commonwealth and Development Office (FCDO); however, the views expressed do not necessarily reflect the UK government’s official policies.